Fresh Meltwater In the Sea Ice System

Chris Polashenski, Don Perovich, Kerry Claffey, Karen Frey, Luke Trusel, and Christie Wood

Photo: Chris Petrich

Meltpond Coverage 2009

Meltpond coverage varies rapidly.

Cumulative Water Movement

Cumulative Water Movement

Cumulative Water Movement

Cumulative Water Movement

▲ Volume Drained ◆ Flow Measured at Holes

• Why do brine channels spontaneously open and enlarge?

• What causes the permeability transition?

52% Liquid

Golden, Ackley, and Lytle. "The Percolation Phase Transition in Ice." Science. Vol 232, 1998.

Photo: Kathryn Hansen/NASA

Ice Core Profiles

From Petrich, Eicken, and Druckenmiller; Barrow Ice Observatory

- 1/15/2009 **-** → 3/25/2009 **-** 5/16/2009 **-** → 2/9/2008 **-** → 4/7/2008 **-** → 4/29/2008 **-** → 5/26/2008
Ice Core Profiles

From Petrich, Eicken, and Druckenmiller; Barrow Ice Observatory

- 1/15/2009 - 3/25/2009 → 5/16/2009 - 2/9/2008 - 4/7/2008 - 4/29/2008 - 5/26/2008

Permeable?

Percolation Threshold: 5% Brine Volume

Ice Core Profiles 2008/9 - From Petrich, Eicken, and Druckenmiller

Percolation Threshold: ~20% Brine Volume

Cumulative Water Movement

Photos: Becky Niemiec

Conclusions

- Ice impermeable to fresh water long after pores connective due to fresh meltwater intrusions refreezing in pores.
- Pores (such as brine channels) above critical size cannot be plugged because heat cannot be conducted away quickly enough
- Appears to be temperature (-0.5C) and porosity (20%) thresholds beyond which ice becomes permeable to fresh water.

Thank You

Collaborators

Don Perovich, Kerry Claffey, Zoe Courville, Dave Finnegan, Matthew Druckenmiller, Hajo Eicken, Chris Petrich, Matthew Sturm, Karen Frey, Luke Trusel, and Christie Wood

> Barrow Arctic Science Consortium USCGS Healy Crew

National Science Foundation Grant No. ARC-0454900 NASA ICESCAPE Program

and they are a state the state