Albedo and the Mechanisms of Melt Pond Evolution on Seasonal Ice

Chris Polashenski, Zoe Courville, Don Perovich, Dave Finnegan, Matthew Sturm, Matthew Druckenmiller, Hajo Eicken, Chris Petrich

Photo: Chris Petrich

June 1st Albedo ~0.79

Melt Pond Coverage, South Site

Ocean

Meters of Water Equivalent Above Reference Plane, North Site

Meters of Water Equivalent Above Reference Plane, North Site

Meters of Water Equivalent Above Reference Plane, North Site

Ocean

June 10th

Water Loss Rate - June 10th

$$
8^{\circ} \theta_{0}^{\theta} 0_{0}^{\theta} \theta^{\theta}
$$

號

．

號

$$
\begin{aligned}
& \text { } \\
& \text { ce }
\end{aligned}
$$

Melt Pond Coverage, South Site

Conclusions

- Early Season Melt Ponds
- Near 100\% melt water retention
- Key Transition
- At the point that brine channels become connective
- Melt Pond Drainage
- Occurs through horizontal, over ice transport to macroscopic holes created by widening brine drainage channels
- Later Season Evolution
- Forced predominantly by freeboard loss

Thank You

Collaborators

Zoe Courville, Don Perovich, Dave Finnegan, Matthew Sturm, Matthew Druckenmiller, Hajo Eicken, Chris Petrich

Barrow Arctic Science Consortium
National Science Foundation Grant No. ARC-0454900

